Search This Blog

Showing posts with label space and war. Show all posts
Showing posts with label space and war. Show all posts

Wednesday, November 2, 2011

Apologetics?

Chapter 9D

Apologetics?

By now some readers may feel that this apology of space technology is turning into the confessions of Pollyanna. If space has done much to drive technology, in some way it must have also influenced the development of the armaments that have held the world hostage to nuclear terror. However diffuse, that influence must have been there. But the most important point is this. If it had not been for technology we would not have been in a position to destroy life on Earth. Once you achieve a certain degree of technological proficiency, total destruction becomes a real possibility. Since space will increase our technological proficiency even more, the military will have even more means of threatening the welfare of human beings. And one day something may go wrong . . . . Moreover, this relationship between the military and technology is inevitable because the military has the function of amassing the best arsenals that it can get its hands on. Thus the military will always try to put technology to its own uses. Some may also fear that further advances in technology may place nuclear weapons within the reach of fanatics and terrorists. The fire that we received from the gods has been fanned by our aggression and our ambition. It may yet reduce us to ashes.

Nevertheless, this line of argument cannot be accepted on a priori grounds alone. And as we have seen, the perceptions that give it plausibility do not square clearly with an examination of the historical developments. In any event, we should be weary of endowing this presumed inevitability of the connection between science and destruction, via technology, with the full status of a law of history. In the first place, the existence of laws of history is at best a debatable philosophical thesis. In the second place, this particular "law" seems to be underwritten by some rather unclear beliefs about aggression and human nature. Whether humans are aggressive by nature still is an open question. Even if Rousseau said that men are perverse and learning only makes them worse, our understanding of human aggression is not yet at the stage where we can use it to declare laws of history.

But let me set aside these rather abstract considerations. Consider instead that not all possible technologies become reality. No one may think of some of them, for example. And even most technologies that people contemplate never are attempted. Of course the military has a lot of money and influence. Nonetheless, that is not enough reason to conclude that our anxious predicament was inevitable. Many unfortunate coincidences were required.

Although the atomic bomb was theoretically possible, it demanded an extraordinary commitment of scientific talent and military funds. If it had not been for the threat that Hitler might be developing such a bomb, it is difficult to see why the American scientists would have been so willing to work on the project or why the Army would have thought seriously of embarking on such a quest. And the step from atomic to hydrogen bomb also required a major effort that could be justified only by the paranoia of the Cold War. But the world could have been very different. Hitler could have been killed early. Or he might have won. The Cold War could have degenerated into full confrontation, and one of the superpowers might have established hegemony over the entire world -- a new grand Roman Empire. None of the technological feats in question came easy. A slightly different timing of events would have changed the political and economic environment that permitted them to be born and prosper. The use of liquid-fuel rockets as weapons is a case in point. If Oberth had listened to the advice of his teachers, his book would not have changed von Braun's life -- it would not have turned him into the VFR's able envoy to the German army. Space rockets might have thus never become ICBMs.

Is it not reasonable to suppose that eventually those weapons would have been built anyway? In some historical scenarios, yes. In others, not. A person does not always buy a rifle whether he needs it or not, just for the hell of it. It depends on what else seems important at the time. But could space technology have been developed in a different world? And if it needed the support of the military, should we not conclude that the two must go hand in hand? Not so. Space exploration could have taken a different route, with success. For one thing because there may be good reasons to engage in it -- as we have seen in previous chapters. And for another, because space enthusiasts may have come up with great propaganda all the same. National prestige alone, even in the absence of a cold war, can be enough of a motivation in some circumstances. As DeGaulle said in ushering France into the space age, "We must invest constantly, push relentlessly our technology and scientific research to avoid sinking into a bitter mediocrity and being colonized by the invention and capacity of other nations."

Still it is obvious that without science and technology we would not have the capacity to destroy our planet. That I must grant. In response, however, I would like to tell a story with a relevant moral. Imagine that a group of humans is marooned in a remote island. One among them, an extremely clever scientist, figures out that a massive earthquake is going to destroy the island in one year. Scientific knowledge would prompt these people to undertake a dangerous journey that they might not survive, leading them to die sooner than if they had stayed in the island (to be successful, the trip must begin almost immediately). On the other hand ignorance would be bliss. But only for a year. What I want to argue is that even though science may increase our chances of disaster in the near future, it may also save us from perhaps greater disasters and allow us to postpone extinction. And in this task space exploration has a significant role to play. The goal of space exploration, Oberth wrote, is "To make available for life every place where life is possible. To make inhabitable all worlds as yet uninhabited, and all life purposeful."

Monday, October 24, 2011

The Star Wars Defense

Chapter 9C

The Star Wars Defense

Another contribution of space to our actual situation is often mentioned. Satellites are integral part in military communications and reconnaissance. But on the whole this has been more of a benefit than not. It was precisely the existence of such satellites that made it possible for the Kennedy administration in the U.S. to sign a test ban treaty with the Soviets. The days of such testing seem a remote memory today, but we must not forget that extremely powerful devices were routinely exploded in the atmosphere, with potentially disastrous effects. And even though a ban was in the interest of both parties, it was difficult to get around the suspicion that the other side would cheat. Together with seismographic methods and other techniques, reconnaissance satellites gave the needed assurances. Little can be done to hide an explosion of several megatons from a good camera overhead.

Satellites also guide “smart bombs” and give the military information needed to invade other lands. But then again, cooperation with the military need not be evil. It all depends on the enemy and the war. Besides, the main motivation for the development of “smart bombs” is to maximize the destruction of military targets while minimizing civilian casualties. This is hardly the basis for an indictment. Now, a new direct application of space technology to war may be the conversion of an airplane designed to fly in the thin Martian atmosphere into a spy plane (for it could fly high enough to avoid standard ground-to-air missiles). As we have seen, though, the spying made possible by space technology has been on the whole beneficial.

Let me leave behind for the moment this examination of past and present and concentrate for a while on the future. There are two main ways in which space can be seen as worsening our situation. One is that weapons more formidable may still result from space technology. The other is that by developing that technology we make the world more unstable. What those formidable weapons might be is largely unknown. A suggestion one hears from time to time is that big rocks could be aimed at the Earth from the Moon. They would be accelerated to escape velocity by electromagnetic forces, and their course toward their Earth target would be corrected by pretty standard guidance techniques. The energy released by the impact of a large rock could cause extraordinary damage. To mount such an attack, a country would require a rather substantial base on the Moon. This base could be underground, and presumably easy to defend. I think that Gerard O'Neill's efforts to design a mass driver to put lunar materials in orbit -- basically the technology for the Moon slingshot -- shows that the military applications are not so readily at hand. The rocks would have to be very big to be effective as weapons and follow a very precise trajectory to fall on the right target. Nonetheless, I suppose that sooner or later such a weapon may be feasible. But I am not sure how the situation would be radically altered. What kept ICBM's in their silos had nothing to do with how easy the silos were to defend. It had all to do with the fear of retaliation upon the society that launched them. Similar remarks should apply to the proposal to build a gigantic solar collector in the Moon to energize a very powerful beam, a death ray, that would vaporize any nation incautious enough to become our enemy.

Another possible nightmare connected with space exploration may come at the time when we make serious attempts to travel to the stars. A hydrogen bomb releases only a small fraction of the energy "frozen" in matter. To achieve the relativistic speeds necessary in star travel we must find practical ways of releasing far larger fractions of energy. The problem is that, with such a technology, it might be possible to make bombs monstrous enough to blow our planet to bits. In that case, however, retaliation would be rendered at once impossible and redundant.

Some evidence suggests that a full-scale attack by one superpower upon the other might be enough already to destroy the human race even if there is no response. According to Carl Sagan and other researchers, a global nuclear war would radically affect the atmosphere, both by the amount of radioactive dust that would circle the planet and by the making it poisonous to terrestrial life. Although this possibility requires a rather pessimistic reading of "Nuclear Winter" scenarios, it should give further pause to nuclear adversaries. As our destructive power increases, to kill may well be tantamount to suicide. This may well show that to build more weapons is sheer folly. We should realize, however, that there is a clear sense in which more offensive power cannot make matters worse. When you have a bazooka pointed at someone's head, bringing a far bigger bazooka does not really alter the situation all that much.

The other way in which space may presumably worsen the situation is by making it more unstable. One possibility much discussed in the recent past was the defense system proposed by President Reagan of the U.S. This system, popularly known as "the star wars defense," would have employed gigantic lasers or particle-beam weapons to knock out ICBMs in flight. Normally the atmosphere would dissipate the impact of such weapons, but since ICBMs must fly in thin regions, they might be easy prey. There were several formidable problems with such a scheme. The first was that the technology required went far beyond the state of the art. The second was that several easy countermeasures were open to the other side. And the third, and most decisive, was that according to the most optimistic reliable estimates such a defense would probably be no more than 75% effective. Since at the earliest time when the system could have been installed, each side could have owned at least 10,000 warheads, the successful 25% would be more than enough to put an end to things human. Even 99% effectiveness would allow for incredible devastation. Although such high level of effectiveness was never in the cards, imagine that a vigorous program of research could have improved the power of lasers and the means of detection of ICBMs to the point that a 100% effective defense had been possible in a few decades. Since the proposal by the American president included making the technology available to the other side, ICBMs would have become obsolete. In this way space would have done away with its main contribution to the anxiety of the Cold War.

In reality, President Reagan's scheme was as pointless as it was expensive: A star wars defense cannot end the threat of annihilation. For the laser beams and the particles shot from low orbit could not penetrate the atmosphere to knock out also bombers and cruise missiles, or even missiles fired from submarines close to the target. That is, even with all the ICBMs neutralized, the Soviet Union and the United States had ample nuclear alternatives to destroy each other and human civilization. In the case of a real war, our celebration of the complete success of Star Wars against ICBM's would have lasted only the few hours that it would take for cruise a missile to barely clear the last hill on its journey to us . .

Whereas some hope that space technology can help us slay the dragon whose fire other technology ignited, others worry about the increasing reliance on satellites for military operations, especially now that it is possible to attack and destroy those satellites. This is seen as one more instance in which space technology brings us to the edge of disaster. But we should notice that a country whose military communication satellites were destroyed would feel inclined to attack mainly because it would reasonably interpret the destruction of its satellites as the prologue to total war. A country could get away with the destruction of another's satellites only if the other could not find out about it. Since this is not so, it seems unreasonable to suppose that space technology has made matters worse.

It is true that in space we can find more reasons for fighting than we already have. If we discover a great treasure in the Moon we may resent any attempts to take it away from us. And our satellites have become such valuable commodities that we would not like to be deprived of them. But we cannot blame space technology in this regard any more than a tribe can blame their canoes for enabling them to discover good hunting grounds downstream, grounds that may become a source of quarrel with another tribe.

Saturday, October 8, 2011

SPACE TECHNOLOGY AND WAR

CHAPTER 9A

SPACE TECHNOLOGY AND WAR

One of Rousseau's complaints against the arts and the sciences was that they weaken the military might of a society. "All examples teach us," he said, "that in military affairs...study of the sciences is much more apt to soften and enervate courage than to strengthen and animate it." Perhaps it was still possible in the 18th Century, when he wrote, to believe that the sciences were luxuries of no practical military consequences -- although even then the new science had brought great advances in ballistics and other military fields. Today those who share Rousseau's suspicion of science do so for different reasons. He worried that science made us if anything less formidable. They worry that it makes us far too formidable.

The proponents of space exploration generally have a benign view of what the enterprise has to offer, although it is not uncommon to see space activities funded precisely because some military advantage is likely to result from them. The serious objection is not, however, that there is a connection between space technology and the military, for after all there have been times when helping the military was the right thing to do (fighting against Hitler, for example). The objection is rather that space technology puts into the hands of man tools that he cannot fail to mishandle. There is an evil side to man, and so whatever discoveries science makes will eventually visit pain and misery upon the human race. Space science and its accompanying technology are no exception. If anything they confirm the suspicions against science in general. Is it not true that rockets have been used to kill and terrorize in the past? Is it not true that for decades they were the very means by which the entire planet could have been brought to nuclear annihilation at a moment's notice? Are they not still a great threat today?

The point is not merely that there is a connection between space and grief. The point is rather that the connection is somehow unavoidable, that you cannot have one without the other. Thus, the more space technology progresses, the more acute the grief. This far more sweeping claim requires that we look into the history of space exploration and its likely future for clues of such inherent connections with destruction and evil. Indeed we must keep in mind that this claim often gains plausibility in the first place because of appeals to history -- mainly to the role of the German V-2 rockets in WWII and of the intercontinental ballistic missiles during the Cold War.

The need to examine this objection in a historical context cannot be stressed too much. Some may argue that the relevant issue is whether space technology will make war inevitable in the future, whatever its role might have been in the past. But this line of argument operates in a rhetorical vacuum. An estimate of the contribution of space technology to war should presumably be supported by reasons, by an account of the causal and probable connections involved. And how are those reasons going to be assessed? On their merits, one might hope. But what are their merits? What makes causal and probable connections plausible in the first place? I submit that these difficult matters are most often influenced by the way we have learned to judge. And what has determined that learning if not our perception of how similar matters have been resolved? We appeal, that is, to our experience, and in the last analysis, to history. At the very least a brief look at history is necessary, then, to unearth assumptions which otherwise may be innocently smuggled into appraisals of the future.

The wish to explore beyond the confines of our own world is very old. By 180 AD it received full treatment in Lukian's Vera Historia (True History), in which travelers go to the Moon when a giant whirlwind picks up their ship from the ocean. In 1634 the famous Johannes Kepler wrote Sleep, a novel about a trip to the Moon. With the advent of the industrial revolution, several would-be inventors tried their imagination at mechanical contraptions that could turn such trips into more than dreams, although their colorful ideas had little to do with the actual development of rocketry many decades later. In Russia there was Kibal'chich, who spent his time designing explosive devices and rocket aircraft, while ignoring his trial for blowing the Czar to bits in 1881. In Germany there was Ganswindt, who worked on a hopeless steam jet to propel his spacecraft. And everywhere there were fiction writers taking their readers on trips that engineering could not yet make available.

The theme of space travel was in the air, and around the turn of the century the real pioneering work was finally carried out. By then science and technology had caught up with the old dreams to the point that not one but three independent investigators provided the foundation of space rocketry. The Russian Tsiolkovsky was the earliest, then came Goddard in the U.S., and finally the most influential of them all, Oberth in Germany. The first thing these three men had to do was show that space flight was indeed possible. Their solution to this problem, as we will see, has some bearing on the issue of whether inherent connections exist between space technology and devastating war. And the problem was that, to many “experts” at the time, space flight seemed not merely far fetched but physically impossible. Some disheartening calculations, for example, showed that however efficient the production of thrust, no rocket could raise its own mass into orbit. But as the pioneers showed, even the most sophisticated impossibility proofs could be gotten around by the very simple but ingenious idea of using multi-stage rockets. The first stage gives the whole rocket an initial boost and then separates. At that point a second stage takes over the task of pushing a lighter vehicle with a now shorter distance to climb. One or two more pushes like that and the rocket achieves orbital velocity.

A second barrier was overcome by the switch from solid to liquid fuels. Standard rockets generally used solid fuels, mostly gun powder, which lacked both the power and the control required for space flight. Tsiolkovsky and the other pioneers soon realized, however, that several mixtures of liquid propellants, particularly hydrogen burned with oxygen, could give rockets the desired performance. This is of particular importance to our question, as we shall see. Now, a quick comparison of liquid and solid fuels shows how right Tsiolkovsky was -- a most remarkable feat for a self-taught man who never gained entrance to the scientific or engineering circles of his day. Liquid propellants liberate more energy per pound than their solid competitors. (The following figures were given by John Shasta of the American Rocket Society in 1936, and appear in William S. Bainbridge's book The Spaceflight Revolution, from which most of the following account is taken). The best powder achieved 1870 BTU's; a mixture of methyl alcohol with oxygen, 3030; while hydrogen and oxygen combined gave 5760. Even in contemporary times the differences are pronounced: The solid fuel in the typical military rocket of the 1970's produced in principle an exhaust velocity of 2250 meters per second (m/s), a figure inferior to the 2750 m/s that Goddard had actually achieved with his small rockets decades earlier, and much below the 4200 m/s obtained by burning hydrogen with oxygen. At least until recently, the best that could be hoped for in future solid fuels did not measure up to the performance of liquid fuels in this respect.

In the second important respect, control, the differences are just as pronounced. The difficulty with a solid propellant is that it tends to burn until it is exhausted. You cannot just shut it off and start it again. In a liquid system, on the other hand, you may always control the amounts of fluids intervening in a reaction -- you may increase it, decrease it, or turn it off altogether. And you can open the valves again and thereby restart the combustion that gives you the thrust. This fine control permits the appropriate accelerations at the appropriate times to maneuver the rocket into the desired orbit. And although the techniques to achieve this control were not easily acquired by rocket developers in the decades that followed, there was now a clear direction of research, as well as good reasons to think that the problems could be solved.

The three pioneers also provided basic formulas for engine performance and specified likely vehicle trajectories. Now the goals were clarified, and so were the means for attaining them. Nevertheless, the move toward space did not quicken its pace for a long time. The few who were technically competent and who took the trouble to read carefully the works of the rocket pioneers may have realized the potential involved. But most technically qualified people regarded the topic with suspicion and did not bother themselves with an investigation of it. There is nothing conspiratorial or shortsighted in that attitude. Any scientist may well be bombarded with a myriad of ideas that he himself has not examined in detail. Which ones should he explore? Not all of them. He cannot. And surely not those that strike him as implausible or without foundation. Time is too short for that. Science changes because not all scientists are cut of the same cloth, and thus what seems preposterous to the majority may instead strike a resonant chord in a few others. Most beginnings are therefore small, and the development of space technology was no exception.

The dreams of the pioneers were left for others to realize. Tsiolkovsky remained undiscovered and ignored. Goddard was very secretive about his own work. As Bainbridge points out, "He did not publish an account of his first 1923 engine firing until 1936, when the V-2 was already taking shape on German drawing boards. Complete reports of his experiments in the 1930s were not published until 1961, the year that Yuri Gagarin orbited the Earth." This situation was apparently more the result of his peculiar temperament than anything else. According to Bainbridge, "Goddard tended to ignore the work of other men in the field, was remiss in his correspondence with colleagues, refused to share his results, and would not participate in joint projects. He seemed to want to achieve successes...then burst upon the world in triumph." But one man alone could not achieve what took the efforts of many thousands. Such were the first quirky steps in the strange journey that took us to the Moon.

As interesting as the lives and motivations of these men were, an account that would do them justice is beyond the scope of this book. For our purposes, it is enough to say that those motivations had more to do with the liberation of the human spirit, with its excellence, than with the destruction of other human beings. In Oberth's words: "...probably Mankind will even build spaceships sometime, make other planets habitable, or even establish habitable stations in space, and having become morally mature in the meantime, will bear life and harmony out into the cosmos."

Oberth presented his masterwork The Rocket into Interplanetary Space as his doctoral dissertation in 1922 (Goddard's crucial theoretical work preceded his by ten years, and Tsiolkovsky's by twenty). He was turned down with the advice to look for a more suitable topic. He refused, and then proclaimed that he could become a greater scientist than his examiners, "even without the title of doctor." His arrogance was not entirely misplaced. Within a year he had published his book, of which Arthur C. Clarke has said that it "may one day be classed among the few that have changed the history of mankind." In any event, it became not only a source of inspiration but also the textbook for the German rocket experimenters. One such group, founded in 1927, the VFR--Verein fur Raumschiffahrt (Society for Space Travel) -- was to prove of crucial importance.

Saturday, January 16, 2010

Long-term exploration, SETI, space war

Dimming of Starlight

Ch. 1C


Space scientists, who may be generally sympathetic to the main theses of this book, are nevertheless deeply divided on the question of how best to explore space. Some claim that exploring with humans is frightfully expensive and dangerous, that the Space Shuttle has set back the cause of exploration, and that continuing to favor astronauts over robot spacecraft will set it back even further. And they are indeed correct – in the short run. I argue in Chapter 7 that a measured increment of the human presence in space will eventually lead to even greater opportunities for all the space sciences. I also point out how the proposed colonization of other planets, the mining of the asteroids, and the expansion into the outer solar system, and perhaps the galaxy, may secure the survival of the human species. Of course, such fanciful proposals may be little more than far-fetched dreams, but those dreams begin to pull us away from our mother planet, and as they color our perception of space exploration they influence its direction. Even more fanciful, although of special scientific and philosophical interest, are the heated debates about relativistic starships and faster-than-light travel.

Perhaps no aspect of space exploration has been as controversial as the search for extraterrestrial intelligence (SETI). For some it has been a noble calling, for others the most ridiculous waste of money and effort. The critics won the day in Congress when NASA was forced to drop SETI altogether many years ago, although private donations and platoons of volunteers have kept the search going. As we will see in Chapter 8, many of the arguments for and against the existence of extraterrestrial intelligence are based on what Carl Sagan called the “Principle of Mediocrity” (that the Copernican revolution has taught that there is nothing special about the Earth or its place in the universe). But, as I will argue, such a principle does not stand up to criticism. We have no good reasons for optimism or pessimism on this matter: the most reasonable position is agnosticism.

This is not to say that SETI is a worthless enterprise. For example, the problem of how we might communicate with extraterrestrial civilizations, if there are any, teaches us a few things about how we understand the world and ourselves. It is often thought that advanced species will have discovered many of the fundamental laws of physics, chemistry, and so on; otherwise they could not make the attempt to communicate across the vastness of interstellar space. But since the laws of nature are (presumably) the same everywhere, and since they are expressed in mathematics, all advanced species will have things in common that can serve as the basis of communication. According to this conventional wisdom, then, there must be intellectual convergence between highly intelligent species, just as there is convergence of form between fishes and dolphins.

But how can we support this assumption of convergence? Evolutionary history is made up of millions of contingencies. It would be practically impossible for life to evolve in other worlds along the same paths it has followed on Earth. We thus face an unpleasant consequence: a different evolutionary history may produce different brains – different ways, that is, of perceiving the environment and of putting those perceptions together. And those are the brains that will one day develop science. It is thus plausible to suggest that those brains will operate with mental categories different from ours, and that alien science and mathematics may also differ from ours. Discussing the assumption of convergence will thus involve us in the philosophical problem of whether we discover or invent science.

Another idea whose discussion leads to a better understanding of living beings is the suggestion by Freeman Dyson and others that we should use von Neumann self-reproducing machines to colonize the galaxy. I argue, also in Chapter 8, that the very idea of such technology is based on the mistaken metaphor of the genome as a computer program. The speculations by Robert Zubrin that nanotechnology will allow us to get around the overwhelming obstacles to self-reproducing machines do not get very far either, for some of the most fanciful claims made about nanotechnology are also without justification.[i]

Many interesting issues come up in the details of practically all the fields of exploration discussed in this book. In Chapter 4, for example, I note that an argument against the possibility that Venus once had oceans has the same structure as an argument for the end of the world (or more precisely, of humankind) advanced by the philosopher John Leslie and inspired by the physicist Brandon Carter’s account of the anthropic principle. In my opinion, both the objection to Venusian oceans and Leslie’s argument assume an untenable view of probability.

Whatever the benefits of space exploration, it also involves a variety of risks. One danger, in particular, seems to be of great importance: the unavoidable connection between space technology and war. This connection is presumably made quite obvious by the terror inflicted upon London in World War II by Wernher von Braun’s V2 rockets, and strengthened by Ronald Reagan’s proposal for a Star Wars defense against the Soviets’ intercontinental ballistic missiles, themselves strong evidence of the evils men fall prey to when reaching for the heavens. We will see in Chapter 9, however, that the connection between space technology and war is not quite that obvious. Its apparent plausibility comes from popular historical interpretations of the relevant episodes, but a closer look fails to support the claim that the connection is unavoidable. Moreover, space technology may prove to be key to the long-term survival of terrestrial life, as Zubrin and others have claimed.

By Chapter 10, it will be clear that the profound practicality of science, via the serendipity that is its natural consequence, provides an adequate response to the social critics. Our new understanding of science in light of space exploration will also set aside the concerns of the ideological critics. Most ideological criticisms stem from purported insights about the relationship between human beings and the environment of the Earth – insights such as the balance of nature, the wisdom of non-interference with natural processes, and so on. But as we will see, such insights do not withstand scrutiny. Moreover, to offer a strong argument, the ideological critics need a global understanding of the Earth’s environment. But as I explain again in this final chapter, that global understanding requires the assistance of comparative planetology and space technology. To meet their ultimate goals, and our obligation to future generations, they would do well to ally themselves with the “big science” they so often deride.



[i] Robert Zubrin’s seminal ideas about exploration will be discussed in several other chapters, particularly in Chapter 7.