Search This Blog

Showing posts with label significance of space physics. Show all posts
Showing posts with label significance of space physics. Show all posts

Wednesday, November 10, 2010

Space Physics and Astronomy

Chapter 5A

Space Physics and Astronomy

According to the journal Science, Rashid Sunyaev, a famous Russian astrophysicist, “once heard the chair of his department say that ‘astronomy was an absolutely useless science.’”[1]

After the spectacular successes of the space telescopes and the new generation of Earth-bound telescopes, the public may be surprised to learn that not long ago many scientists regarded space astronomy and space physics with some suspicion. Quite a few physicists, for example, felt that all those billions of dollars for space astronomy should have supported the construction of a new generation of particle accelerators instead – particle accelerators dealt with truly basic science. I presume that a good many of those physicists may now agree that the money spent in space telescopes has been money well spent. But it is important to see why they are right in having changed their minds.

The reason is that, in the pursuit of cosmological knowledge, physics and astronomy done in space affect the transformation of our views in a very important respect: They provide a framework within which to challenge our most fundamental terrestrial sciences. For to understand the formation and evolution of the universe we need to see how the basic laws of nature are expressed in it. At the same time, to have a good grasp of the basic laws of nature we need to see how well we can describe the universe by using them. In a second respect they affect that transformation in an even more radical way: astronomy and physics done in space allow us to discover phenomena that we could not have discovered otherwise and that will force us to develop a new physics.

THE OBJECTION TO SPACE SCIENCE

As we recall from Chapter 3, a scientific critic might argue that, since these sciences examine far-away objects, the ensuing transformation of our views is unlikely to pay off for the inhabitants of the Earth. For example, space astronomy and physics constitute a prime example of attempting to satisfy our intellectual curiosity -- they aim to describe features of the universe that many people find interesting, sometimes fascinating. The problem for my thesis is precisely that these space sciences fit my points about curiosity so well while apparently failing to satisfy my expectation about practical results in the long run. Surely, the objection continues, it is by no means obvious that the transformation of our theories about black holes, quasars, and intergalactic gas will be of much application on the Earth.

There is, according to the objection, a great difference between Earth-bound physics and these space sciences. Consider anew the example of how Einstein’s revolution in physics led to lasers and their application in medicine: That revolution transformed our understanding of the basic principles of matter, of principles that apply down here. It is not surprising, then, that our panorama of problems and opportunities was bound to change as a result of the transformation of our thought. The principles of fundamental science (e.g. particle physics) apply down here because they apply everywhere. By contrast, space astronomy and space physics merely apply to stars, galaxies, and quasars the fundamental principles of matter discovered by Earth-bound physics -- thus they are derivative sciences. My thesis about serendipity would then apply only to fundamental science. Therefore, space astronomy and space physics cannot be justified by my general philosophical argument.

For almost a century now the most fundamental and empirically successful description of matter has been given by the so-called Standard Model, which explains the universe in terms of its building blocks (particles) and the fields (strong, weak, electromagnetic and gravitational) that allow those blocks to interact. The main experimental tools of the Standard Model have been giant particle accelerators that smash those particles at speeds close to that of light and then theorize from the resulting debris. When the choice came between spending billions to build even more powerful accelerators or spending billions to put up telescopes in orbit, the feeling among many physicists was that, interesting though astronomy may be, taking money away from the terrestrial tools that would allow us to advance the Standard Model further was tantamount to blunting fundamental science’s cutting edge.

My response will be as follows: (1) space physics and astronomy have distinct scientific advantages over terrestrially bound sciences; (2) these scientific advantages show that space physics and astronomy are fundamental science in the same sense that terrestrially bound physics is because (a) you cannot do terrestrial physics properly without doing space science, and (b) the theoretical and experimental articulation of physics needs challenge, a challenge that space science has provided and will continue to provide. Space science has made the Standard Model due for a change.



[1] “News Focus: In the Afterglow of the Big Bang.” Science, vol 327, January 1, 2010: 27.

Saturday, January 9, 2010

Value of space science

The Dimming of Starlight: The Philosophy of Space Exploration

Ch. 1b

The notion that science and space exploration go hand in hand may seem obvious to a casual observer, but it has been bitterly contested over the years. Many scientists, perhaps the majority of scientists, were opposed to the Apollo program, to put a man on the Moon, on the grounds that it was political showbiz and not science. And just about every important field of space science has been denigrated, at one time or another, in the most prestigious and established quarters of science. Some of those fields still are.[i] And if we pay attention we may still hear rumblings that all that money should go for truly important research. Indeed, a common complaint, particularly in the physical sciences, has been that space science is merely applied science, and thus it would follow that, if we wish to forge changes to our fundamental views of the world, we should concentrate on putting our money and effort into fundamental science, not into space science.

In my reply I will show how every main branch of space science leads to new perspectives of immense value. I will argue in Chapter 4 that several of the main problems that our planet confronts now (e.g., the depletion of the ozone layer and global warming), as well as those it will probably confront in the next few centuries, are far more likely to be solved thanks to space exploration in two ways. The first is that such problems tend to be global problems and space technology is particularly well suited to study the Earth as a global system. The second is that as we explore other worlds we gain a broader and deeper understanding of our own planet.
From comparative planetology we will move on to space physics and astronomy, two fields ripe with the promise of radical changes to our scientific points of view. Such changes will in turn yield an extraordinary new harvest of serendipitous consequences for technology and for our way of life. The reason these two fields are ripe with promise is simple. The Earth’s atmosphere limits drastically the information we receive about the universe because it blocks much of the radiation that comes in our direction. This shielding is, of course, a good thing, for otherwise life could not exist on our planet. But to make even reasonable guesses about the nature of the universe, we need that information. That is why we need telescopes in orbit and eventually on the Moon and other sectors of the solar system. Until the day when space telescopes began to operate, many physicists thought of space physical science as applied science, mere application, that is, of the very successful “standard model” that explained matter in term of its constituting particles and the forces between them.

But, as I discuss in Chapter 5, physicists had been trying to explain a limited universe – a universe based on what we could observe through a few peepholes in the walls that protected us from cosmic dangers. It had already been known for some time, though not widely, that the visible mass in galaxies did not exert enough gravitational force to keep their outer rims of stars from being flung into intergalactic space. Astronomers presumed that eventually the missing mass would be found, but when space telescopes gave us the whole electromagnetic spectrum to look for that mass, we still could not find enough of it. According to some high estimates, up to 90% of the mass needed to account for the behavior of galaxies is undetectable (“dark matter”), apparently unlike the matter explained by the “standard model.”

To make a bad situation worse, in the late 1990s space astronomers discovered that the expansion of the universe was accelerating, even though we should expect that, after the Big Bang, gravity would slow down the rate of expansion. A new form of energy (“dark energy”) is supposed to explain this bewildering state of affairs, once we determine what its properties are.

Fundamental physics, which uses the “standard model” to think about the universe, explains familiar matter and energy. But most of the universe seems to be made up of unfamiliar dark matter and energy, perhaps even upwards of 90% when you combine those two. This means that thanks to space science we found out the extraordinary extent of our ignorance, and that space science is a necessary tool for developing a new physics.

Space exploration is also ripe with promise for biology. This promise is particularly interesting in the case of the astrobiologists’ attempt to search for life in other worlds. For example, when a NASA team announced in 1996 that a Martian meteorite contained organic carbon and structures that looked like fossils of bacteria, meteorite experts adduced that inorganic processes could account for all the substances and structures found in the meteorite. Therefore, these experts claimed, by Occam’s razor, we should reject the (ancient) Martian-life hypothesis (Occam’s razor is a principle that favors the simpler hypothesis; it is named after William of Occam, a medieval philosopher). Other scientists pointed out, in addition, that the presumed fossils were about one hundred times smaller than any known bacteria, too small in fact to be able to function as living organisms. But as we will see in Chapter 6, Occam’s razor would, if anything, favor the Martian-life hypothesis; and, ironically enough, the claim about the minimum size of living things spurred a search that, according to some, yielded many species of extremely small bacteria, nanobacteria, some even smaller than the purported Martian fossils![ii] Space biology proper (doing biological experiments in space) has not yet produced such spectacular and significant discoveries, but, as we will also see in Chapter 6, the main objections against its scientific value are based on misguided distinctions between fundamental and applied science not unlike those advanced some years ago against the space physical sciences. Some of these objections are also based on mistaken assumptions about genetics, and particularly about the relationship between genotype and phenotype.

[i] These points will be discussed in detail in Chapters 3-7. Stephen G. Brush has aptly illustrated the significance of the space sciences to the development of physics, as will be seen particularly in Chapter 5.
[ii] This is a controversial matter, but I will argue in Chapter 6 that this particular controversy is beneficial for biology.

Next Posting: brief summary of the additional controversies about space exploration to be explored in this book: humans vs. machines in exploration; space colonization; terraforming; travel at relativistic speeds; travel faster than light; SETI; space and war.