Search This Blog

Showing posts with label extraterrestrial intelligence. Show all posts
Showing posts with label extraterrestrial intelligence. Show all posts

Saturday, August 27, 2011

Exploration of the Galaxy by Living Beings

Chapter 8b

Exploration of the Galaxy by Living Beings

This, of course, assumes that interstellar flight is possible. As we already saw, one problem with interstellar flight is that it takes a very long time. Even traveling close to the speed of light, it takes four years to get to the nearest star and over 30,000 years to arrive at the center of the galaxy. As we discussed in Chapter 7, these are not the times for the travelers themselves, who might be able to make a round trip to the center of the galaxy in their lifetimes. Unfortunately the energy involved may be such as to make prohibitive any more than an occasional probe. We have also seen that some extremely fanciful ideas, including ramjets driven by nuclear catalytic engines, and even superluminal starships, are consistent with current physical theory. Nevertheless, we cannot base an impossibility proof on technologies that are at best problematic, for an impossibility proof with weak links is not much of a proof (the same reasoning would apply with even greater force to the development of hyper-space travel, or some of the other fanciful inventions of science fiction writers).

Still, a velocity 1/100 that of light is within the scope of the technology described in Chapter 7. At this velocity, it would take us about eight million years to arrive at the furthest confines of the galaxy. A more centrally located species could have spread throughout the galaxy in a little over five million years, and that is only a bit more than 1/1000 the age of the Earth. Since the galaxy is at least twice as old as the Earth, if technological civilizations are as prevalent as the proponents of SETI would have it, many such civilizations should have arisen before ours. But that presumably means that they should have been here already. Even at a much lower rate of expansion, the time it takes to cover the entire galaxy is not much compared with the age of the galaxy itself. Our ancestors who migrated from Africa to the rest of the world never completed the journey themselves, but, by moving a little in each generation, eventually they covered the entire planet. And as long as the journey was, it took but a moment in the life of the homo-sapiens family.

Of course, a journey of eight million years for a species that is not yet a million years old would not be a small undertaking, but it is a journey that we may begin one step, one star, at a time. And at any rate, if we realize that complex creatures such as the dinosaurs lived for about 140 million years, and that moving into the cosmos would probably enhance the long-term survival of the species, we can see that the travel time may be relatively short for some species. Presumably this would make a complete expansion by someone or other seem almost inevitable.

There is no question that interstellar travel at that velocity would pose a variety of social difficulties for us. Chief among them is that it would take 400 years to arrive at the nearest star, perhaps 100 years with improvements in technology. Since it would be a second or third generation that would finish the trip--and if the nearest stars are not suitable, it would take an even later generation--we are not sure that we can entrust the success of the exploration to people that would not have been born when the decision to explore the galaxy is made. It may also be frightfully expensive to keep alive and healthy the many humans that would be necessary to send in a mission of that sort.

Nevertheless, we can cook up several scenarios in which the social obstacles are overcome and a species begins to migrate to the stars: an authoritarian regime forces the issue, or there is forewarning of a cosmic catastrophe, or the migration is simply a natural consequence of a long and massive colonization of the species' own planetary system. In such a case, this version looks more like the impossibility proof it is purported to be.

Moreover, a proponent of SETI cannot reply by bringing up reasons why a civilization may not choose to travel throughout the galaxy. Given that we are average, we can easily imagine why at least one of the many technological civilizations would eventually venture out with the purpose of colonization. This is easy to imagine because we can imagine why we ourselves might begin such an adventure. Accepting low odds (in the style of SETI proponents), let us say that it is one of a thousand options we have. Under certain conditions it may become the most reasonable option. Out of 1,000 advanced civilizations 100 million years ago, then chances are that one would have built starships. But where are they? As for the assumption of expansionism, again from our own case we know that we have a tendency to move onto new niches. Even if the tendency is not overwhelming, the existence of many civilizations will make it likely that at least one will act on it. And all it takes is one, as long as we assume that star travel is indeed possible and that the tendency to expand will give such a civilization the required persistence. The mediocrity principle supports this impossibility proof.

Of course, as in the previous impossibility proof, we may be able to find excuses for why we have not detected an alien presence in our solar system. Imagine for example, the enormous difficulty that we would have ourselves in trying to spot even a large starship that came within a few astronomical units from Earth, a distance that may be quite suitable for an alien species to conduct a survey of our solar system. At that sort of distance it is not easy to detect asteroids smaller than a kilometer across, even when we are searching for them. A starship may come in no closer than Saturn but send much smaller probes into orbit around the other planets. Their advanced stealth systems may be beyond our technological ability to detect. Or the ship may have been here already and gone home (or gone silent). The excuses may be limited only by our imagination.

In addition, in this discussion we have to assume that a slower conquest of the galaxy will not be hampered by lack of resources. But once again the Principle of Mediocrity comes to the rescue of the objection. In our own solar system it seems that the Kuiper Belt and the Oort Cloud would offer the resources needed for the survival of a civilization not unlike that envisioned by O’Neill’s in his proposal of space colonies. And since we are pretty much average, we should expect such resources to be spread throughout the galaxy.

As we will see below, the Principle of Mediocrity makes for an interesting philosophical target. But let us consider first whether seeking contact with advanced alien civilizations is wise.

The Wisdom of Contact

To make matters worse for SETI, if by some quirk of fortune we have not been found yet, the principle of mediocrity should lead us to question the wisdom of trying to communicate. It is clear that in our complete expansion in our own planet we have done our best to eliminate all significant competition from other species. The last thing we wish to do is advertise our presence to more advanced species who may then wish to occupy our niche, and in the process may need to get rid of the local pests, or at least bring them under control. In some circles there is the feeling that advanced creatures must somehow be wise and benevolent, although under the guidance of the principle of mediocrity it would be difficult to see why. In the first place we have a history of ruthlessness toward species that become obstacles to our aims; we have been ruthless even to other human cultures. Consider for example, as Ron Bracewell has pointed out, what the response of suburbanites might be if raccoons became much smarter. They would be such pests that suburbanites would go to great lengths to wipe them out[1]. And few of us would lose much sleep over that. Indeed when we try to poison cockroaches and rats, or hunt the coyotes that prey on our sheep, the issue of benevolence or malevolence seldom comes up.

In light of these considerations, some suggest that we should lay low until we are in a better position to do battle if need be. There are others who argue that the issue is moot since we have been radiating into space our radio and television signals for a long time. That may be so, but those signals would be very weak and well scrambled by the time they leave the solar system, and in view of the difficulties we have recognized in trying to look for alien transmissions, and the low powers of most of our own transmissions, it is not unreasonable to suppose that detecting life on Earth from, say, 100 light years away would involve a rather substantial amount of luck. Of course, some transmissions, radar beams for example, are very powerful. And in any event, the great activity in the radio range alone might indicate to another civilization that a relatively advanced technology exists here. At the present time the SETI program (not longer at NASA, as I mentioned earlier) does not transmit any messages. There does not seem to be much harm in listening, anyway, and so officially the wisdom of communication is not yet a problem we must face. Nevertheless, unofficially we do have to concern ourselves with it, since some radio astronomers have already sent messages on their own.



[1] R. Bracewell. The Galactic Club. San Francisco: W. H. Freeman 1975.

Saturday, January 16, 2010

Long-term exploration, SETI, space war

Dimming of Starlight

Ch. 1C


Space scientists, who may be generally sympathetic to the main theses of this book, are nevertheless deeply divided on the question of how best to explore space. Some claim that exploring with humans is frightfully expensive and dangerous, that the Space Shuttle has set back the cause of exploration, and that continuing to favor astronauts over robot spacecraft will set it back even further. And they are indeed correct – in the short run. I argue in Chapter 7 that a measured increment of the human presence in space will eventually lead to even greater opportunities for all the space sciences. I also point out how the proposed colonization of other planets, the mining of the asteroids, and the expansion into the outer solar system, and perhaps the galaxy, may secure the survival of the human species. Of course, such fanciful proposals may be little more than far-fetched dreams, but those dreams begin to pull us away from our mother planet, and as they color our perception of space exploration they influence its direction. Even more fanciful, although of special scientific and philosophical interest, are the heated debates about relativistic starships and faster-than-light travel.

Perhaps no aspect of space exploration has been as controversial as the search for extraterrestrial intelligence (SETI). For some it has been a noble calling, for others the most ridiculous waste of money and effort. The critics won the day in Congress when NASA was forced to drop SETI altogether many years ago, although private donations and platoons of volunteers have kept the search going. As we will see in Chapter 8, many of the arguments for and against the existence of extraterrestrial intelligence are based on what Carl Sagan called the “Principle of Mediocrity” (that the Copernican revolution has taught that there is nothing special about the Earth or its place in the universe). But, as I will argue, such a principle does not stand up to criticism. We have no good reasons for optimism or pessimism on this matter: the most reasonable position is agnosticism.

This is not to say that SETI is a worthless enterprise. For example, the problem of how we might communicate with extraterrestrial civilizations, if there are any, teaches us a few things about how we understand the world and ourselves. It is often thought that advanced species will have discovered many of the fundamental laws of physics, chemistry, and so on; otherwise they could not make the attempt to communicate across the vastness of interstellar space. But since the laws of nature are (presumably) the same everywhere, and since they are expressed in mathematics, all advanced species will have things in common that can serve as the basis of communication. According to this conventional wisdom, then, there must be intellectual convergence between highly intelligent species, just as there is convergence of form between fishes and dolphins.

But how can we support this assumption of convergence? Evolutionary history is made up of millions of contingencies. It would be practically impossible for life to evolve in other worlds along the same paths it has followed on Earth. We thus face an unpleasant consequence: a different evolutionary history may produce different brains – different ways, that is, of perceiving the environment and of putting those perceptions together. And those are the brains that will one day develop science. It is thus plausible to suggest that those brains will operate with mental categories different from ours, and that alien science and mathematics may also differ from ours. Discussing the assumption of convergence will thus involve us in the philosophical problem of whether we discover or invent science.

Another idea whose discussion leads to a better understanding of living beings is the suggestion by Freeman Dyson and others that we should use von Neumann self-reproducing machines to colonize the galaxy. I argue, also in Chapter 8, that the very idea of such technology is based on the mistaken metaphor of the genome as a computer program. The speculations by Robert Zubrin that nanotechnology will allow us to get around the overwhelming obstacles to self-reproducing machines do not get very far either, for some of the most fanciful claims made about nanotechnology are also without justification.[i]

Many interesting issues come up in the details of practically all the fields of exploration discussed in this book. In Chapter 4, for example, I note that an argument against the possibility that Venus once had oceans has the same structure as an argument for the end of the world (or more precisely, of humankind) advanced by the philosopher John Leslie and inspired by the physicist Brandon Carter’s account of the anthropic principle. In my opinion, both the objection to Venusian oceans and Leslie’s argument assume an untenable view of probability.

Whatever the benefits of space exploration, it also involves a variety of risks. One danger, in particular, seems to be of great importance: the unavoidable connection between space technology and war. This connection is presumably made quite obvious by the terror inflicted upon London in World War II by Wernher von Braun’s V2 rockets, and strengthened by Ronald Reagan’s proposal for a Star Wars defense against the Soviets’ intercontinental ballistic missiles, themselves strong evidence of the evils men fall prey to when reaching for the heavens. We will see in Chapter 9, however, that the connection between space technology and war is not quite that obvious. Its apparent plausibility comes from popular historical interpretations of the relevant episodes, but a closer look fails to support the claim that the connection is unavoidable. Moreover, space technology may prove to be key to the long-term survival of terrestrial life, as Zubrin and others have claimed.

By Chapter 10, it will be clear that the profound practicality of science, via the serendipity that is its natural consequence, provides an adequate response to the social critics. Our new understanding of science in light of space exploration will also set aside the concerns of the ideological critics. Most ideological criticisms stem from purported insights about the relationship between human beings and the environment of the Earth – insights such as the balance of nature, the wisdom of non-interference with natural processes, and so on. But as we will see, such insights do not withstand scrutiny. Moreover, to offer a strong argument, the ideological critics need a global understanding of the Earth’s environment. But as I explain again in this final chapter, that global understanding requires the assistance of comparative planetology and space technology. To meet their ultimate goals, and our obligation to future generations, they would do well to ally themselves with the “big science” they so often deride.



[i] Robert Zubrin’s seminal ideas about exploration will be discussed in several other chapters, particularly in Chapter 7.